Correlation of NADH and Ca2+ signals in mouse pancreatic acinar cells.

نویسندگان

  • S Voronina
  • T Sukhomlin
  • P R Johnson
  • G Erdemli
  • O H Petersen
  • A Tepikin
چکیده

Relationships between calcium signals and NADH responses were investigated in pancreatic acinar cells stimulated with calcium-releasing secretagogues. Cytosolic calcium signals were studied using Fura Red or calcium-sensitive Cl(-) current. Mitochondrial calcium was measured using Rhod-2. The highest levels of NADH autofluorescence were found around the secretory granule region. Stimulation of cells with physiological doses of cholecystokinin (CCK) triggered slow oscillations of NADH autofluorescence. NADH oscillations were clearly resolved in the mitochondrial clusters around secretory granules. Very fast apical calcium signals induced by acetylcholine (ACh) produced no detectable changes in NADH; slightly more extended apical (or preferentially apical) calcium transients triggered clear NADH responses. Triple combined recordings of cytosolic calcium, mitochondrial calcium and NADH revealed the sequence of development of individual signals: an increase in cytosolic calcium was accompanied by a slower mitochondrial calcium response followed by a delayed increase in NADH fluorescence. Recovery of cytosolic calcium was faster than recovery of mitochondrial calcium. NADH recovery occurred at elevated mitochondrial calcium levels. During the transient cytosolic calcium oscillations induced by intermediate doses of ACh, there was an initial increase in NADH fluorescence following the first calcium transient; each of the subsequent calcium responses produced biphasic NADH changes comprising an initial small decline followed by restoration to an elevated calcium level. During the higher-frequency sinusoidal calcium oscillations induced by higher doses of ACh, NADH responses fused into a smooth rise followed by a slow decline. Supramaximal doses of ACh and CCK produced single large NADH transients.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hydrogen peroxide attenuates refilling of intracellular calcium store in mouse pancreatic acinar cells

Intracellular calcium (Ca2+) oscillation is an initial event in digestive enzyme secretion of pancreatic acinar cells. Reactive oxygen species are known to be associated with a variety of oxidative stress-induced cellular disorders including pancreatitis. In this study, we investigated the effect of hydrogen peroxide (H2O2) on intracellular Ca2+ accumulation in mouse pancreatic acinar cells. Pe...

متن کامل

Bile acids induce necrosis in pancreatic stellate cells dependent on calcium entry and sodium‐driven bile uptake

KEY POINTS Acute biliary pancreatitis is a sudden and severe condition initiated by bile reflux into the pancreas. Bile acids are known to induce Ca2+ signals and necrosis in isolated pancreatic acinar cells but the effects of bile acids on stellate cells are unexplored. Here we show that cholate and taurocholate elicit more dramatic Ca2+ signals and necrosis in stellate cells compared to the a...

متن کامل

Cannabinoid receptor subtype 2 (CB2R) agonist, GW405833 reduces agonist-induced Ca2+ oscillations in mouse pancreatic acinar cells

Emerging evidence demonstrates that the blockade of intracellular Ca(2+) signals may protect pancreatic acinar cells against Ca(2+) overload, intracellular protease activation, and necrosis. The activation of cannabinoid receptor subtype 2 (CB2R) prevents acinar cell pathogenesis in animal models of acute pancreatitis. However, whether CB2Rs modulate intracellular Ca(2+) signals in pancreatic a...

متن کامل

Measurement of Ca2+ signaling dynamics in exocrine cells with total internal reflection microscopy.

In nonexcitable cells, such as exocrine cells from the pancreas and salivary glands, agonist-stimulated Ca2+ signals consist of both Ca2+ release and Ca2+ influx. We have investigated the contribution of these processes to membrane-localized Ca2+ signals in pancreatic and parotid acinar cells using total internal reflection fluorescence (TIRF) microscopy (TIRFM). This technique allows imaging w...

متن کامل

Agonist-evoked mitochondrial Ca2+ signals in mouse pancreatic acinar cells.

In the present study we have investigated cytosolic and mitochondrial Ca(2+) signals in isolated mouse pancreatic acinar cells double-loaded with the fluorescent probes fluo-3 and rhod-2. Stimulation of pancreatic acinar cells with 500 nm acetylcholine caused release of Ca(2+) from intracellular stores and produced cytosolic Ca(2+) signals in form of Ca(2+) waves propagating from the luminal to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of physiology

دوره 539 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2002